As the first “Super-Power” design, the 2-8-4 began as a potent tonnage-hauler that evolved into the very symbol of fast-freight steam power

BY NEIL CARLSON
Thanks to the Nickel Plate Road, the common image of a 2-8-4 Berkshire type is at the head of a redball freight eating up the miles at 60 mph in order to make a tight connection in Buffalo. Berkshires enabled the Nickel Plate to rely on steam longer than most railroads. Until July 1958, NKP’s hottest trains where entrusted to its magnificent 2-8-4’s, and the road became a mecca for fans in search of steam. Although this is an accurate image of the 2-8-4, there is a lot more to the story. The first Berkshires were not known for their speed. Indeed, the name Berkshire comes from the Berkshire Hills of Western Massachusetts where the first of the type cut their teeth lugging freight up heavy grades.

The Berkshire story revolves around three people: William E. Woodard, John Bernet, and William Black. Woodard was vice president of engineering at Lima Locomotive Works; he led the development of the 2-8-4. Bernet and Black, while at the Erie and then the Nickel Plate, took Lima’s 2-8-4 and turned it into what is best remembered as being—a high-speed freight engine.

LIMA SEES AN OPPORTUNITY

During the 1920’s, the United States experienced a period of rapid economic expansion and, in sustaining this growth, the nation’s railroads were severely strained. Capital investment had come to a halt during World War I, and now railroad infrastructure needed a major investment to increase capacity. Double-tracking, more sidings, better signaling, heavier rail, stronger bridges, and more locomotives were all on the needs list.

Lima Locomotive Works looked at this situation and saw an opportunity—a big one. Will Woodard knew that the easiest and least expensive way to increase capacity was simply to run longer and faster trains. Further, the railroads were ripe for new power. The existing locomotive fleet, with thousands of elderly Consolidations and Ten-Wheelers (many non-superheated), was hopelessly obsolete. There were far too few modern 2-8-2’s and 4-8-2’s. Lima’s strategy was simple: design and build faster, more-powerful locomotives.

MICHIGAN CENTRAL Lima introduced many of the “Super-Power” ideas that would make Berkshires great in MC 8000, a 2-8-2 built in 1922. It was a star, prompting MC parent NYC to order 300 copies.

Lima’s initial entry was a state-of-the-art 2-8-2 that did not require the development of any new technology. Woodard simply used the very best of what was currently available. The locomotive had as big a firebox and grate as could be supported by a two-wheel trailing truck. It used the new Type E superheater, which could be configured to provide both more superheating surface and greater evaporative surface than a locomotive equipped with the older Type A superheater. It also came with a feedwater heater. This appliance tapped into the exhaust steam and used a portion of it to preheat boiler feedwater. A feedwater heater could add as much as 10 percent to locomotive performance simply by utilizing energy that would normally be lost going up the stack. In common with most freight power of the time, its driving wheels were 63 inches in diameter. It also was equipped with a trailing-truck booster that added an additional 13,200 pounds of tractive effort at low speeds and while starting.

The locomotive, given the number 8000, ran a series of trials on the Michigan Central, a subsidiary of the New York Central. It was compared to a heavy Mikado of about the same size (NYC’s class H-7) that was only two years old. No. 8000 outperformed the H-7 by 26 percent. The 8000 had been designed with a new philosophy that emphasized drawbar horsepower, and not just drawbar pull. Given similarly sized trains, the 8000 could accelerate and pull its train faster than the H-7. Additionally, when it wasn’t working hard, it was more efficient than the H-7. It burned less coal and used less water. New York Central was impressed, and purchased an additional 300 nearly identical 2-8-2’s, classified H-10, for use all over the system.

LIMA’S A-1

After the 8000, Lima pushed the envelope even further with the development of a new high-capacity boiler. Good design practice called for equipping a new locomotive with the most powerful boiler that could be practically mounted to its frame. However, to achieve the results desired by Woodard, boiler capacity had to be pushed beyond the then-current state-of-the-art. The Lima men knew that fuel burns more efficiently if it can be burned more slowly. Let’s say a locomotive is burning 32 tons of coal per hour. If this is burned on a 70-square-foot grate, it takes a firing rate of 100 lbs. of coal per square foot per hour. If the same amount of coal is burned on a 100-square-foot grate, the firing rate will be only 70 lbs. per square foot per hour—a substantial difference. The slower rate allows more of the heat from the fuel to be absorbed by the boiler.

A bigger grate was the answer. The difficulty was that 70 square feet of grate area was just about at the practical limit of what could be supported by a single-axle trailing truck. So, to incorporate a 100-square-foot grate, Lima introduced the two-axle trailing truck. The 2-8-2 thus became a 2-8-4—the first “Super-Power” (as Lima called it) steam locomotive design.

This locomotive had another innovative feature: limited cut-off. Normally, when a...
The new 2-8-4 otherwise employed existing technology. This included the Type E superheater, a trailing-truck booster, and an Elesco feedwater heater. However, it still had relatively low (by later standards) 63-inch drivers. Lima gave it the designation A-1 and sent it on a series of trials in the East and Midwest. The first were on another New York Central subsidiary, the Boston & Albany, in early 1925.

The new 2-8-4 otherwise employed existing technology. This included the Type E superheater, a trailing-truck booster, and an Elesco feedwater heater. However, it still had relatively low (by later standards) 63-inch drivers. Lima gave it the designation A-1 and sent it on a series of trials in the East and Midwest. The first were on another New York Central subsidiary, the Boston & Albany, in early 1925.

BOSTON & ALBANY NYC’s New England subsidiary was the first customer for production versions of Lima’s A-1. B&A 1426 and 1435 are eastbound with a freight near Chatham, N.Y., on May 31, 1946, hammering into the hills that gave the 2-8-4 type its name.

BOSTON & MAINE Hood-like Coffin feedwater heaters gave a menacing look to T-1a 4009 and her sisters, which were otherwise similar to the A-1. Ousted by FT’s, 7 went to the Santa Fe, 10 to the SP, in 1945.
The B&A tests were run on a 60-mile segment through the Berkshire Hills of western Massachusetts. The line had many curves, an average grade of 1 percent, and some stretches of 1.5 percent. The A-1 was compared against a two-year-old H-10 2-8-2 of the same design as Lima’s 8000. Nine test runs were made, and the results were nothing short of spectacular. The A-1 showed an increase in drawbar horsepower over the H-10 of 26 to 30 percent at all speeds. Once again, the NYC knew a good thing when it saw it: the B&A took delivery of 45 2-8-4’s based on the A-1 in 1927 and another 10 in 1930.

Upon completion of its trials on the B&A, the A-1 moved to neighboring Boston & Maine. A competitor to the B&A, the B&M had a parallel line across western Massachusetts that was then worked by 2-10-2’s. During its tests on the B&M, the A-1 cut two hours off the normal running time over the 210 miles between Mechanicsville, N.Y., and Boston. While the B&M had parallel lines with these results, it was not until almost two years later that the road placed an order for 20 engines for delivery in 1928; another five arrived in 1929. Unlike the A-1 and the B&A engines, the B&M 2-8-4’s came with Coffin feedwater heaters. They were hung on the front of the smokebox, giving the locomotives a distinctive, hooded look.

After returning from the B&M, the A-1 tested on the Illinois Central. At the completion of a series of trials, IC ordered 50 similar locomotives that were delivered in late 1926—ahead of both the B&A and the B&M engines. Later, the IC also bought the A-1 itself. All worked in southern Illinois. The IC Berkshires had an important feature not included on the A-1 or the B&A engines: two Nicholson thermic syphons in the firebox. Syphons draw water from the base of the rear tube sheet, where it is coolest, and route it up through the firebox to the top of the crown sheet. Moving this cooler water through the very hot firebox enhances the transfer of heat to the water. The Boston & Maine engines were also fitted with syphons.

Other builders joined in. American Locomotive Co. built 12 2-8-4’s for the Chicago & North Western in 1927. These included all of the key features of the A-1, including limited cut-off. The major departure was the incorporation of a Commonwealth cast-steel trailing truck instead of Lima’s articulated model. The C&NW locomotives were then copied by Alco subsidiary Montreal Locomotive Works, which in 1928 built two engines for the Toronto Hamilton & Buffalo—Canada’s only Berkshires. Also in 1928, Alco delivered five 2-8-4’s to Missouri Pacific subsidiary International-Great Northern, followed by Lima the next year with 25 engines to the MoPac itself.

In 1927 Baldwin got into the act and delivered 15 2-8-4’s to the Santa Fe. These were not copies of the A-1. The grate area was close to that of the A-1, but the Baldwin engines had the older Type A superheater, giving them less total heating surface. In another departure from the A-1 design, they were full-stroke engines. The Santa Fe assigned them to fast freights operating east of Kansas City, but they really were not fast-freight engines. In their later years they were converted to burn oil and worked in Texas and New Mexico. They were joined in 1945 on the Santa Fe by seven 2-8-4’s from the Boston & Maine, which was dieselizing.

POWER AND SPEED

In 1926 control of the Erie Railroad had passed into the hands of Oris P. and Mantis J. Van Sweringen. The brothers were real estate developers in Cleveland and had gotten into the railroad business as a means to obtain a rapid-transit right-of-way from downtown Cleveland to suburban Shaker Heights, where they had a large residential development. As a part of this venture, they purchased the Nickel Plate Road, followed by a controlling interest in the Pere Marquette, the Chesapeake & Ohio, and the Erie. The Erie was not a healthy company, and the Vans brought in John Bernet, who had previously turned around the Nickel Plate.
The A-1 itself, plus 50 copies, went to the IC, which made one into a freight 4-6-4 but rebuilt the rest in-kind and renumbered them 8000-8049.
Plate, to take charge. What he found was a railroad whose main line managed to bypass almost all the major cities along its route. Consequently, the Erie originated a disproportionately low amount of traffic for its route-miles. Further, the railroad had a "tonnage mentality" that resulted in the operation of heavy drags handled by 2-10-2's and 2-8-2's.

Bernet quickly grasped the situation. He put together a plan that called for turning the road into a high-speed bridge route. The Erie's city-skirting main line could be turned into an asset when used to expedite freight from Western connections to Eastern markets. However, before this plan could be implemented, the railroad's operating philosophy needed to be turned on its head, and a new fleet of high-speed freight engines would be required.

One of the people Bernet brought with him from the NKP was William Black, who had been the chief of motive power there. In collaboration with Alco and Lima, he led a design team to develop the new freight engine needed by the Erie: a high-speed 2-8-4. All prior Berkshires—those built by Lima and the copies from other builders—were not fast engines. To achieve the desired higher speeds, the Erie specified that its new engines have 70-inch driving wheels, not the 63-inch drivers used on previous 2-8-4's. This larger wheel was now big enough to hold the additional counterweight needed to balance it for operation at 60 mph and above. The Erie Berkshires mated a powerful boiler with high-speed running gear, thus marking a major milestone in the development of the 2-8-4.

Erie's first orders went to Lima and Alco, with each supplying 25 engines in 1927. The boilers of each group were identical, but there were some significant differences in the valve events and running gear. The Alcos were full-stroke engines and had a Commonwealth cast-steel trailing truck. Lima's Berkshires had the articulated trailing truck and 60 percent limited cut-off. However, to achieve the same rated tractive force as the Alco engines, Lima raised the boiler pressure to 250 psi vs. Alco's 225 psi.

The Lima engines tipped the scales at 457,500 lbs., the heaviest yet for a Berkshire. Additionally, with the generous clearances on the Erie (a legacy of the road's original gauge of 6 feet) the engines were physically imposing. They reached a height of 16 feet 4 inches above the rail and were 11 feet 2 inches wide. In 1928, Baldwin delivered a further 35 2-8-4's, also full-stroke engines. Finally, in 1929, the Erie received another 20 engines from Lima, giving the carrier a total of 105 Berkshires—the greatest number purchased by a single railroad. They would...
be the road’s last steam power.

Erie’s Berkshires transformed the railroad from a drag-freight operator to a very competitive high-speed bridge route. Berkshires were placed in service between Marion, Ohio, and Jersey City, enabling the establishment of new freight schedules offering third-morning deliveries for Chicago–New York shipments. In particular, the Erie and the Santa Fe developed a well-oiled connection in Chicago, moving hundreds of thousands of carloads of Western produce to the East Coast. Additionally, the Erie found that its Berkshires—despite their high drivers—could work as helpers on mountain grades, and, at the other end of the spectrum, even pinch-hit in passenger service.

THE APOGEE

After having turned around the Erie, and then spending time as the president of the C&O, John Bernet again found himself at the helm of the Nickel Plate in 1933. However, it was not the same railroad that he had left in 1926. Freight schedules of other Eastern carriers had left the NKP behind. Wabash and New York Central had become very competitive with their fast 4-8-2’s. The Erie, which Bernet himself had transformed into an efficient high-speed freight hauler, had emerged as a formidable competitor as well. Further, Erie and NYC had their own routes to the eastern seaboard, whereas Nickel Plate had to work through connections at Buffalo. The NKP’s best freight power consisted of a fleet of USRA 2-8-2’s that were no match for the fleet-footed competition.

In 1929 the Van Sweringens had created a centralized engineering bureau, pooling talent from all four of their railroads. Called the Advisory Mechanical Committee, it was led by William Black. Bernet turned to Black and the AMC for help. He needed a new high-speed freight engine for the Nickel Plate.

From the beginning it was clear that the new engine would be a 2-8-4. The starting point was C&O’s T-1 2-10-4, which the AMC had designed in 1930. The T-1 took the Texas type to a new level by mating a powerful boiler to 69-inch drivers. It was able to lug heavy drags or move with alacrity, as the situation demanded. Black’s design team quite literally scaled down the T-1 into a Berkshire while retaining its most important features.

Like the T-1, the new engine had a combustion chamber, the first Berkshire so equipped. To accommodate it, the boiler-tube length was shortened to 19 feet and the grate area reduced to 90.3 square feet. These were excellent tradeoffs to gain the greater firebox furnace volume necessary for the complete combustion of fuel. Two thermic syphons were placed in the firebox. Like the T-1, the new Berkshire had a 34-inch stroke. This had several benefits. First, the engine got into its peak horsepower range at a lower speed. Second, it permitted the use of a small piston diameter of just 25 inches. This reduced the piston’s reciprocating weight and minimized clearance-volume losses. (Clearance volume is the space between the pis-

Missouri Pacific The last 2-8-4’s of the A-1 mold, MoPac’s 30 BK-63’s also were similar to C&NW’s J-4. Nos. 1121-1125 worked a quarter century, but MP rebuilt 1901-1925 into 4-8-4’s in the early 1940’s.

Erie The third fiddle in the New York–Chicago market was the first of all roads to have fast Berkshires. Built in 1929, S-4 3389 was from Erie’s final order, which brought the road’s total to 105 2-8-4’s.

Santa Fe Loyal Baldwin customer AT&SF turned to the Eddystone, Pa., builder for its Berkshires. They were a new design, not directly derived from the A-1, but had the 63-inch drivers of the other early 2-8-4’s.
ton and the cylinder head at the end of the stroke, plus the passageway leading to the valve. Steam filling this void does no work; it is a source of losses. This space can represent as much as 10 percent of the cylinder volume.) Lastly, limited cut-off was discarded in favor of a full stroke.

Upon completion of the design effort, NKP solicited bids. The order went to Alco, which delivered 15 engines in 1934. Ten of them were put to work between Bellevue, Ohio, and Chicago, and the other five worked between Cleveland, Lima, and Frankfort, Ind. All acquitted themselves admirably in high-speed freight service. During World War II the Nickel Plate expanded its fleet with an additional 45 2-8-4's—this time from Lima. Then, in 1949, after testing diesels and rejecting them, NKP took delivery of 10 more Lima Berkshires. These were the very last 2-8-4's built and the last steam locomotives built by a commercial builder for use in America. The very last, No. 779, is preserved near its birthplace in Lima.

OTHER AMC ENGINES

Toward the end of the Great Depression, the 506-mile Wheeling & Lake Erie found itself in need of new power. The railroad was familiar with the Berkshire type, as it had a Youngstown–Toledo run-through agreement with the Erie, and Erie 2-8-4's were regular visitors. The Wheeling arranged to borrow an NKP engine to see whether an AMC Berkshire could also handle the road's heavy mineral traffic. It was found to be more than capable of handling ore and coal drags in the rolling hills of southeastern Ohio, so the Wheeling ordered 10 2-8-4's from Alco, which delivered them in 1937. Since the Timken Roller Bearing Co. was a key on-line customer, all locomotive and tender axles had rollers, the first Berkshires so equipped. In three more orders through 1943, the Wheeling acquired an additional 22 Berkshires. In 1949, NKP leased the Wheeling, and the smaller road's 32 engines were added to the Nickel Plate 2-8-4 fleet.

Also in 1937, the Pere Marquette Railway took delivery of 10 Lima Berkshires. They were a slight departure from the original AMC design, with 26x34-inch cylinders that raised the tractive force to 69,350 lbs. To keep the adhesion ratio at 4.0, engine weight was increased to 436,500 lbs. The 2-8-4's did a superb job handling the PM's priority manufacturing traffic across Michigan, and the railroad returned to Lima for 29 more, which were delivered in four orders through 1944. Of these, 20 came equipped with trailing-truck boosters, giving the engines a rated tractive effort of 83,750 lbs. These were the first AMC engines with boosters.

During 1942, Lima expanded its production line of NKP engines to include 10 for the Richmond, Fredericksburg & Potomac. Under the hood, these were stock AMC engines, but externally they had some details changed so they would resemble other RF&P power. The differences included the sand dome, cab, and the inside-bearing pony truck.

Chesapeake & Ohio, following the lead of its subsidiary Pere Marquette, began assembling its own fleet of Berkshires in 1944. All came with 26-inch-diameter cylinders and trailing-truck boosters. Through 1947, C&O acquired a total of 90 2-8-4's—70 from Alco and 20 from Lima. They were initially put to work hauling coal trains along the New River Gorge in West Virginia, but could later be found all over the railroad, handling everything from hot manifests to heavy passenger trains in the mountains. After the PM was merged into the C&O, the latter road became the owner of the largest fleet of Berkshires: 129.

After World War II, a change of management brought some former C&O (and NKP) men to the helm of the Virginian Railway. One of the new team's first acts

ATSF to W&LE: the 611 2-8-4's

<table>
<thead>
<tr>
<th>RAIL-ROAD</th>
<th>CLASS</th>
<th>ROAD NOS.</th>
<th>QUANTITY</th>
<th>BUILDER</th>
<th>YEAR</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATSF</td>
<td>4101</td>
<td>4101-4114</td>
<td>15</td>
<td>Baldwin</td>
<td>1927</td>
<td></td>
</tr>
<tr>
<td>B&A</td>
<td>A-1a</td>
<td>1400-1424</td>
<td>25</td>
<td>Lima</td>
<td>1926</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-1b</td>
<td>1425-1444</td>
<td>20</td>
<td>Lima</td>
<td>1926-27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-1c</td>
<td>1445-1454</td>
<td>10</td>
<td>Lima</td>
<td>1930</td>
<td></td>
</tr>
<tr>
<td>B&M</td>
<td>T-1</td>
<td>4000-4024</td>
<td>25</td>
<td>Lima</td>
<td>1928-29</td>
<td>1</td>
</tr>
<tr>
<td>C&O</td>
<td>K-4</td>
<td>2700-2789</td>
<td>90</td>
<td>Alco, Lima</td>
<td>1943-47</td>
<td></td>
</tr>
<tr>
<td>C&NW</td>
<td>J-4</td>
<td>2801-2812</td>
<td>12</td>
<td>Alco</td>
<td>1927</td>
<td></td>
</tr>
<tr>
<td>DT&I</td>
<td>-</td>
<td>700-705</td>
<td>6</td>
<td>Lima</td>
<td>1935-39</td>
<td></td>
</tr>
<tr>
<td>ERIE</td>
<td>S-1</td>
<td>3300-3324</td>
<td>25</td>
<td>Alco</td>
<td>1927</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-2</td>
<td>3325-3349</td>
<td>25</td>
<td>Lima</td>
<td>1927</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-3</td>
<td>3350-3384</td>
<td>35</td>
<td>Baldwin</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-4</td>
<td>3385-3404</td>
<td>20</td>
<td>Lima</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>-</td>
<td>7000-7049</td>
<td>50</td>
<td>Lima</td>
<td>1926</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7050</td>
<td>1</td>
<td>Lima</td>
<td>1924</td>
<td>3</td>
</tr>
<tr>
<td>MP</td>
<td>BK-63</td>
<td>1121-1125</td>
<td>5</td>
<td>Alco</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BK-63</td>
<td>1901-1925</td>
<td>25</td>
<td>Lima</td>
<td>1930</td>
<td>4</td>
</tr>
<tr>
<td>NKP</td>
<td>S</td>
<td>700-714</td>
<td>15</td>
<td>Alco</td>
<td>1934</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-1</td>
<td>715-739</td>
<td>25</td>
<td>Lima</td>
<td>1942-43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-2</td>
<td>740-769</td>
<td>30</td>
<td>Lima</td>
<td>1944</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-3</td>
<td>770-779</td>
<td>10</td>
<td>Lima</td>
<td>1949</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>-</td>
<td>600-604</td>
<td>5</td>
<td>Baldwin</td>
<td>1940</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>N</td>
<td>1201-1215</td>
<td>15</td>
<td>Lima</td>
<td>1937</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>N-1</td>
<td>1216-1227</td>
<td>12</td>
<td>Lima</td>
<td>1941</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>N-2</td>
<td>1228-1239</td>
<td>12</td>
<td>Lima</td>
<td>1944</td>
<td>6</td>
</tr>
<tr>
<td>P&LE</td>
<td>A-2a</td>
<td>9400-9406</td>
<td>7</td>
<td>Alco</td>
<td>1948</td>
<td></td>
</tr>
<tr>
<td>RF&P</td>
<td>-</td>
<td>571-580</td>
<td>10</td>
<td>Lima</td>
<td>1943</td>
<td></td>
</tr>
<tr>
<td>TH&B</td>
<td>A</td>
<td>201-202</td>
<td>2</td>
<td>Montreal</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td>VGN</td>
<td>BA</td>
<td>505-509</td>
<td>5</td>
<td>Lima</td>
<td>1946</td>
<td></td>
</tr>
<tr>
<td>W&LE</td>
<td>K-1</td>
<td>801-832</td>
<td>32</td>
<td>Alco</td>
<td>1937-42</td>
<td>7</td>
</tr>
</tbody>
</table>

Notes:
1) Seven to ATSF 4193-4199, 10 to SP 3500-3509, 1945. 2) 7038 rebuilt to 4-6-4 No. 1, 1937. 3) Ex-Lima A-1 No. 1. 4) Rebuilt to 4-8-4's 2101-2125, 1940-42. 5) To C&O 2685-99, 1947. 6) To be C&O 2650-61, 2670-81, not renumbered. 7) To NKP 801-832, 1949.
AMC action

PERE MARQUETTE West of Porter, Ind., PM ran on NYC into Chicago, and here’s N-1 1227 rushing east through Gary; it’s May 1948, nearly a year after the C&O acquired PM and its 1200’s. In ’49, NKP got W&LE’s AMC Berks through merger.

RICHMOND, FREDERICKSBURG & POTOMAC Though not a Van Swearingen road, RF&P had 10 Berks built to NKP specs during World War II. Train control box, cast pilot, and raised cab-side numbers gave them the RF&P look.

CHESAPEAKE & OHIO From the front, C&O’s K-4’s were as distinctive as the name the road gave to them: Kanawha. Nos. 2771 and 2755 meet on the Coal River branch south of St. Albans, W.Va. The Virginian Railway’s five 2-8-4’s were virtual copies, but they lacked boosters.
was to modernize the road’s locomotive fleet. Not surprisingly, they adopted C&O designs, including the AMC Berkshire. The Virginian took delivery of five 2-8-4’s—exact copies of the C&O engines, albeit without boosters—from Lima in 1946. They were put to work hauling manifest freight between Roanoke and tidewater at Norfolk, replacing 34-year-old 2-8-2’s. They cut more than 30 minutes off the running time.

ALMOST AN AMC ENGINE

The Louisville & Nashville went shopping for a new freight engine in 1941. Its newest steam locomotives were 4-8-2’s and 2-8-2’s from the late 1920’s, and, with traffic increasing because of the hostilities in Europe, the road was feeling the crunch. L&N had some constraints that limited its locomotive choices. Infrastructure issues prevented it from considering a large, heavy engine such as an articulated or a big 4-8-4. Consequently, management settled on a 2-8-4, and placed an order with Baldwin to design and build 14 engines. Baldwin—being the minority builder of 2-8-4’s—borrowed heavily from the AMC. The key departure was in the use of a 32-inch stroke vs. the AMC’s 34-inch. To achieve a tractive effort comparable to that of an AMC engine, the boiler pressure was raised 20 lbs. to 265 psi.

The L&N M-1’s (“Big Emmas”) proved extremely successful. Like their purebred AMC cousins, they were at home in the coalfields, on manifest freight, or heavy passenger trains. Testing with a dynamometer car showed they were capable of producing 4,500 h.p. at the drawbar. In 1944 Baldwin added another 6 engines, and in 1949, Lima delivered 22 more. These last M-1’s shared the production line with the final 10 NKP 2-8-4’s, bringing down the curtain on Lima’s steam locomotive production.

POTPOURRI

The Advisory Mechanical Committee 2-8-4 represented the high point for the wheel arrangement. After its introduction, most railroads that ordered Berkshires adopted it. Nonetheless, three did not. In 1935, one year after the NKP engines had been introduced, the Detroit, Toledo & Ironton took delivery of four Berkshires from Lima that represented a step backward. For unknown reasons, they came built after 69-inch drivers had become standard for 2-8-4’s, DT&I’s engines had 63-inch wheels. Following its 6 Berks of 1935-39, DT&I bought 12 heavy Mikados in 1940-44.

LOUISVILLE & NASHVILLE Only 2 inches of cylinder stroke and 20 psi of steam pressure separated L&N’s “Big Emmas” from the AMC-designed Berkshires.
with 63-inch drivers and a proportionately shorter boiler. The railroad bought two more in 1939. Although they were handsome, they did not have the same capability as an AMC engine.

Down in North Carolina and southeastern Virginia, the Norfolk Southern Railway took delivery of five 2-8-4's in 1940 weighing almost 100,000 lbs. less than a typical AMC engine. The north end of the NS main line between Charlotte, N.C., and Norfolk, Va., was plagued by numerous weight restrictions on bridges, and its motive power had to conform to these requirements. Nonetheless, the new engines helped turn the NS into a competitive bridge route. The NS “pocket” Berkshires were notable on two counts: They were very much the smallest built, and they were the last to run in North America. After the NS dieselized in 1950, they were converted to burn oil and found a new home in Mexico, where some ran into the early 1960’s.

Alco delivered its last steam locomotives—seven Berkshires of a unique design—to the Pittsburgh & Lake Erie in 1948. The big question is why this happened. Two years earlier, P&LE’s parent, the New York Central, had made the decision to dieselize, yet it chose steam for its subsidiary. Further, they were a new design, with 63-inch drivers, not based on the AMC engine. They were intended solely for service on the P&LE, handling steel, ore, and coal drags. However, after the P&LE dieselized, they wound up on NYC’s Big Four Division on the flatlands of Ohio, where they were ducks out of water. They could not maintain the pace of the road’s speedy, 69-inch-drivener 4-8-2 Mohawks.

The Berkshire proved to be a highly versatile locomotive. It was the first of the “Super-Power” engines and it led a revolution in locomotive design. It was equally at home at the head of hot manifests, coal and ore drags, and heavy passenger trains.

PIITTSBURGH & LAKE ERIE Perhaps the oddest 2-8-4’s of all were the seven built for P&LE in 1948. This very last 2-8-4 design was in some ways a throwback to the original A-1, though much less powerful.

NORFOLK SOUTHERN Smallest by far of all Berkshires, and among the last ones to be designed, were NS’s quintet of 1940. No. 602 stands at Raleigh, N.C., in 1945.
Campaign train rides, exemplified by this scene on the New Haven at Bridgeport, Conn., November 4, 1944, were actually a minority of rail trips for the 32nd President.
Franklin D. Roosevelt was an experienced train traveler by the time he became President and set records by logging 243,827 miles during his 12 years in the Oval Office. But his most important time on the rails was spent as commander-in-chief during World War II.

Roosevelt’s first rail journey after beginning his presidency was a 4½-hour trip from Jersey City, N.J., to Washington, D.C., on April 21, 1933. He went by train a number of times during his first two terms, traveling to Springwood (his Hyde Park, N.Y., home), to his “Little White House” retreat at Warm Springs, Ga., and for political and campaign purposes. As with any President traveling, there was nothing simple about any of these journeys.

Chief Executives’ trains had carried the designation POTUS, for President of the United States, since at least Benjamin Harrison’s term (1889-1893). By the early 1930’s, presidential railroad trips necessitated detailed planning. According to railroad histories such as Bob Withers’ The President Travels by Train (TLC Publishing, 1996), arrangements were made—beginning months in advance—by the railroad on which the journey began. Officials of the Baltimore & Ohio and Pennsylvania railroads, through liaison with other carriers, handled the majority of FDR’s rail arrangements nationwide. (Roosevelt liked train travel and was well-acquainted with the U.S. rail network. In fact, he might’ve been a “rare mileage collector,” a term decades away from being coined, because he liked to be routed over lines new to him. He also liked to fill out his private car’s space diagram cards himself!)

Prior to a trip, a series of actions occurred along the chosen routes. Train dispatchers had to avoid conflicts with scheduled passenger and freight trains. Pilot trains preceded presidential specials, and sometimes a decoy engine and consist were included. Replacement locomotives, crews, and parts were often placed at key locations. Division superintendents or road foremen of engines in a given territory often rode, or operated, the locomotive hauling the President’s train. Each road’s plainclothes special agents (police) worked with the Secret Service and local police to guard station platforms, control crowds, investigate threats, and screen persons who boarded the special trains.

Advance operations involved stopping most trains for 30 minutes before a presidential train would pass, although some passenger trains occasionally were granted slow passage. Other preparations ranged from right-of-way inspections to building reserves of water supplies and carefully choosing high-grade coal.

In FDR’s era, the typical POTUS train consisted of a locomotive; a baggage car (often containing automobiles for conveyance to civic centers, hotels, etc.); a communications car (from 1942 onward, having world-wide links); three or four Pullman sleepers for news people; a press car with tables for rows of typewriters, photographers’ darkroom facilities, and Western Union telegraph equipment; dining cars; a lounge car; three or four Pullman sleepers for presidential staff, Secret Service, and railroad police; and, at the rear, the President’s open-platform private sleeping car.

FROM PUBLIC TO PRIVATE
Roosevelt’s first important summit meeting, while representing the still-neutral United States, was with British Prime Minister Winston Churchill at Placentia Bay, Newfoundland, Canada. For that meeting, FDR took a series of rail and ship rides. They began at Washington Union Station on August 3, 1941, on the Pennsylvania Railroad to New York and the New Haven to New London, Conn. They boarded the presidential yacht USS Potomac and sailed to the water-borne meeting in Canada. Upon its conclusion, he disembarked from the Potomac at Rockland, Maine, on August 16, and rode by train back to Washington on a route that included Maine Central, Boston & Maine, New Haven, and Pennsylvania.

After the United States’ entry into World War II, FDR’s journeys had to have the highest security and secrecy. With enlarged White House staff and more Secret Service details, railroad agents, and local police involved, much greater care was taken...
FDR was said to prefer the B&O over the Pennsy, and P-7 Pacific 5319 President Arthur hauled him, including on April 13, 1943, on the first leg of his second big nationwide tour.
Military personnel and a color guard wait for Roosevelt to alight from the Roald Amundsen at Fort Lewis, Wash., September 22, 1942.

FDR’s two big wartime inspection rail trips

FDR’s two secret nationwide trips in fall 1942 and April 1943 encompassed 32 days through 33 states over 15,640 miles on 24 railroads.
Franklin D. Roosevelt became the first President in office during a war to be able to travel extensively without compromising his status as Commander-in-Chief, thanks to a special communications railroad car.

In May 1942, the White House Signal Detachment (WHSD), in charge of presidential communications, had been assigned the task of developing such a car with comprehensive and rapid message capabilities. WHSD instructed the U.S. Army Transportation Corps to obtain a car, which the Corps did—a combination baggage-coach (“combine”) owned by the Baltimore & Ohio, numbered 1401.

WHSD leased the car, keeping its B&O number, and began a series of technical tests even as the car was being modified. The alterations were necessary to meet the needs of the President as well as the requirements of the Association of American Railroads, which was responsible for technical standards nationwide. The results were described by a White House official as “... an awe-inspiring mass of wires, tubes, decoding machines, and other 20th century apparatus.”

Eventually 1401’s equipment included special send-and-receive antenna wires in roof-mounted copper tubing; two Federal BC-339 transmitters; a number of 50-watt FM transmitter-receivers; teletype and telephone exchange equipment; and a section for U.S. Army cipher machines that provided extra protection for messages.

The modifications had some problems. Standard procedures did not work when securing the communications equipment. WHSD staff shock-mounted all the mechanisms only to receive a disappointing surprise—changes in train speed created changing vibrations. The shock-mounted devices oscillated so badly that several pieces were permanently damaged. The WHSD had to hand-bolt the equipment to steady it.

Power for transmissions was first supplied by a gasoline generator. But the AAR faulted WHSD for placing a gasoline tank below the frame of the car. AAR people directed that a double-walled tank with CO2 be used between the walls. This created its own problems, for each time the train neared a tunnel, it would have to stop so the CO2 tank could be emptied, and upon exiting, it would halt again so the tank could be refilled. Such an operation obviously would not work, and the remedy finally was found in two diesel generators.

The antennas also caused problems. WHSD staffers learned that a given car’s vertical limits were 13½ feet from railhead to roof, which left just 6 inches of working room for antennas and their insulators. As this problem was being solved with special equipment applications, a second regulation had to be met—the AAR required the antennas to be placed in wooden troughs as a precaution against electrocution.

WHSD’s first solution placed the antennas in a covering called poly tubing. The plan seemed to be working during practice runs until a railroad inspector asked about the “neon sign” atop 1401. The “sign” was an arcing of the antennas owing to water that had condensed in the poly material. This problem was eventually rectified by putting the equipment in copper tubing and painting it black.

When all tests were complete, the 1401 was designated as a mobile radio station WTE. With it, President Roosevelt had links to the private radio network of the White House, to WAR (the War Department’s primary station), and through WAR, the international U.S. Army Command and Administration Network. This made him the first global leader to have 24-hour access to domestic and international locations while he was mobile.—Fred B. Wrixon

In government service, leased B&O combine 1401 is unlettered.

In direct contact with government and military officials when necessary. This was possible owing to special features of a special communications car, B&O 1401 [see sidebar, above].

As car 1401 was being outfitted, Dewey Long, White House travel director; Michael Reilly, head of the Secret Service; and other planners by October 1942 had decided on a standard Washington embarkation point: the annex of the U.S. Bureau of Engraving and Printing. Here, on the east side of 14th Street, a railroad spur had been built to receive supplies. The site was below street level and concealed from normal lines of sight.

From his first term in office, President Roosevelt most often traveled aboard the Roald Amundsen, one of a series of seven Pullman office-type cars built 1927-29, six of which were named for famous explorers. After Pearl Harbor, Mike Reilly and Steve Early, an influential presidential secretary, decided that, in the interest of safety and security, the President should have a specially assigned, specially equipped car. FDR agreed after being told that the improvements would benefit future Presidents as well. Reilly, Early, and Pullman officials chose the Ferdinand Magellan, one of the explorer-series cars.

Pullman’s Calumet Shops in Chicago gave the Magellan a complete overhaul that included armor-plating and other custom features [see sidebar on page 26], FDR first saw the car on December 18, 1942, and fully approved of all the changes. On that particular Friday, he was again on his way to Springwood and thoroughly enjoyed the renovations during the ride.

TO CASABLANCA, VIA MIAMI

Roosevelt’s trips to top-secret meetings often began by train. For example, on January 9, 1943, FDR left the capital and went north on the B&O, the usual routine for his trips to Hyde Park. But not far out of Washington, at the Fort George Meade Army base in Maryland, the train was turned around, destined to Florida.

The President traveled to Miami over the normal fast passenger route, using PRR; Richmond, Fredericksburg & Potomac; Atlantic Coast Line; and Florida East Coast. At Miami, U.S. Army vehicles transferred baggage and supplies to a place called Dinner Key; a few hours later, FDR and his companions left the train and went there by auto. At a Pan American Airways site, the President’s plane, the Dixie Clipper, and his staff’s aircraft, the Atlantic Clipper, were being readied for a flight to crucial meetings at Casablanca, Morocco.

Everything had run smoothly for the President, but the same would be not true for his aides who stayed stateside. White House travel office director Dewey Long had made last-minute checks on board the planes before bidding the travelers God-
speed. He and two Secret Service men returned to the Miami location where they had left the train, but it was no longer there! Someone (apparently never identified) had ordered the train to be moved.

As Long later said, "Nobody was supposed to know that train was there, and I didn't want to go around asking people if they'd seen anything of my train." Long and the two Secret Service men, toting machine guns, finally spotted the locomotive and consist more than a half mile from its original stopping point. When FDR returned from the Casablanca conference, the train was waiting for him in Miami. He arrived in Washington on the evening of January 31 and resumed an active schedule.

AN INTERNATIONAL FIRST

The President's next extensive rail-borne endeavor was a second national inspection and morale-boosting tour, April 13-29, 1943. While the journey encompassed a smaller, circle-like route of 7,243.7 rail-miles, it still involved 25 railroads and 67 locomotives. The latter ranged from B&O P-7 Pacific President Arthur to a three-year-old, two-unit Union Pacific Electro-Motive E6 diesel, No. 8M1/8M2.

In the first stage of this journey, Roosevelt visited with passenger Mrs. Chiang Kai-shek, wife of the leader of Nationalist China. After she departed, the route took FDR south through Virginia and the Carolinas to South Carolina's Parris Island and the U.S. Marine base there. The train then crossed Georgia into Alabama to visit Maxwell Field, then returned to Georgia for stops at Fort Benning, the U.S. Army's parachute school; Warm Springs, the southern White House; and Fort Oglethorpe, a Women's Army Air Corps training base. From Saturday, April 17, to Tuesday, April 20, the President visited sites that included Camp Forrest, Tenn. (U.S. Army's 80th Division); Camp Gruber, Okla. (U.S. Army's 88th Division); and Douglas Aircraft's plant in Tulsa, Okla.

On April 20, FDR made history as the first U.S. President to visit Mexico. A National Railways of Mexico crew handled his train from Laredo, Texas, to Monterrey, Mexico, where Roosevelt met with Mexican President Manuel Avila Camacho, and they attended a series of festivities. Their private talks resumed after President Avila Camacho's private car and one other car of his train were coupled ahead of the Ferriniard Magellan. The remainder of Avila Camacho's consist followed Roosevelt's train. President Avila Camacho's private car and one other car of his train were coupled ahead of the President's train.

Eleanor Roosevelt (middle of platform, at left in top photo) waves to Mexican President Manuel Avila Camacho's party at Flour Bluff Junction, Texas, April 14, 1943, as the two trains part ways. Tex-Mex diesels 601 (above) and 600 handled the trains out of Laredo.

The meetings and events were deemed a complete success, but the journey had had its share of unusual occurrences. Before leaving Monterrey, Dewey Long nearly had a meeting with a bayonet. As he described it, “I got off the train to rig up a field telephone when this character (a zealous Mexican guard) came at me. Every time I'd try to go for my credentials, he'd come at me with that bayonet.” Unable to speak Spanish, Long had to let the guard take him to a Mexican officer, where the mix-up was resolved.

A greater security concern was caused by a delay en route northbound to Laredo. At 2 a.m. Wednesday, the train came to an unscheduled stop, so Long, Secret Service man Mike Reilly, and other staff went outside. They were nonplussed to find that the Mexican crew had left the train in the middle of the dark countryside. After some anxious searching, Reilly and Long located the trainmaster, who casually replied that the crew was enjoying its usual late-night snack off the train.

Still puzzled, Long complained, "But they can't do that. There's a couple of presidents on board." At some point, Reilly and Long were pointed toward a barely visible light. They ended up walking nearly half a mile to a small shack, where they found the crew enjoying sandwiches washed down with tequila. As presidential secretary Grace Tully later wrote, “Conversation in neither English nor [Spanish] could prevail upon them to return to the train until they had finished their meal.” The train got moving again, and the
In late 1942, Secret Service head Mike Reilly and presidential secretary Steve Early saw the need for President Roosevelt to travel in a more secure car than the standard ones he had been using, and asked the Pullman Company to create one.

FDR had been using Pullman office cars in a series of seven, mostly Roald Amundsen. Reilly, Early, and Pullman officials chose a sister car, the Ferdinand Magellan, built in 1929 and due to be shopped. It had been used to transport FDR once, in 1939. (Others in the series were Pioneer plus four also named for explorers: David Livingstone, Henry Stanley, Marco Polo, and Robert Peary.)

At Pullman’s Calumet Shops in Chicago, the Magellan was given a thorough overhaul. The standard arrangement of staterooms was changed from five to four, permitting a full interior revision from the dining/conference room to the attendants’ quarters, galley, and pantry.

The four staterooms were designated, front to rear, as D, C, B, and A. The President’s room (C) was connected through a full bathroom to the First Lady’s room (B). Rooms D and A were guest rooms on either side. The removal of the fifth room provided three feet of increased space for the dining and rear observation areas. The dining room could accommodate a 38x72-inch mahogany table. It had eight chairs upholstered in green-and-gold striped satin damask. The walls were paneled with limed oak, and the ceilings were ivory with antique gold etchings. The observation lounge was 12 feet long, with its walls done in a light brown material that had a leather-like appearance. Chairs and a sofa provided comfortable viewing through eight windows that were glazed with bulletproof, three-inch-thick glass.

The Magellan’s security was formidable. Steel armor plating of a ¼-inch thickness lined its full surface. The door between the rear lounge and open platform weighed 1,500 pounds and could be opened only from the inside. Extra features included escape hatches in the ceiling of the lounge and above the shower in the presidential suite's bathroom. The rear steps on both sides of the open platform were replaced with electric platform elevators to avoid having to use a ramp for FDR’s special needs.

Refrigerators, ice and storage spaces, hot- and cold-water tanks, and air-conditioning and steam-heat equipment all added to the car’s bulk. Its weight grew from a standard 80 tons to 142½ tons, the heaviest Pullman ever! Painted in dark Pullman green, the Magellan was 14½ feet high, 10 feet wide, and 83½ feet long. Only the name “Pullman” appeared on the letterboards, not the car name, and as a security precaution it carried no exterior numbers. The roof hatch was changed from five to four, permitting a full interior revision from the dining/conference room to the attendants’ quarters, galley, and pantry.

The four staterooms were designated, front to rear, as D, C, B, and A. The President’s room (C) was connected through a full bathroom to the First Lady’s room (B). Rooms D and A were guest rooms on either side. The removal of the fifth room provided three feet of increased space for the dining and rear observation areas. The dining room could accommodate a 38x72-inch mahogany table. It had eight chairs upholstered in green-and-gold striped satin damask. The walls were paneled with limed oak, and the ceilings were ivory with antique gold etchings. The observation lounge was 12 feet long, with its walls done in a light brown material that had a leather-like appearance. Chairs and a sofa provided comfortable viewing through eight windows that were glazed with bulletproof, three-inch-thick glass.

The Magellan’s security was formidable. Steel armor plating of a ¼-inch thickness lined its full surface. The door between the rear lounge and open platform weighed 1,500 pounds and could be opened only from the inside. Extra features included escape hatches in the ceiling of the lounge and above the shower in the presidential suite's bathroom. The rear steps on both sides of the open platform were replaced with electric platform elevators to avoid having to use a ramp for FDR’s special needs.

Refrigerators, ice and storage spaces, hot- and cold-water tanks, and air-conditioning and steam-heat equipment all added to the car’s bulk. Its weight grew from a standard 80 tons to 142½ tons, the heaviest Pullman ever! Painted in dark Pullman green, the Magellan was 14½ feet high, 10 feet wide, and 83½ feet long. Only the name “Pullman” appeared on the letterboards, not the car name, and as a security precaution it carried no exterior numbers.

Pullman office car Ferdinand Magellan is stripped for rebuild in 1942 at the company’s Calumet Shops on Chicago’s south side. For security reasons, Ferdinand Magellan displayed neither its name nor its number, U.S. No. 1.
presidents parted after a photo session at the Flour Branch Junction wye near Corpus Christi.

FDR’s train moved north on the MoPac. At Fort Worth, the presidential party visited the Roosevelts’ son Elliott at his ranch. Mrs. Roosevelt and her staff remained there, but FDR resumed his travels, heading west on April 22. By the 24th his train was in Colorado, and at Camp Carson near Colorado Springs, FDR got to see one of the arsenal of democracy’s important new weapons, the bazooka.

The last Colorado stop was in the Denver area, with visits to a hospital, airfield, and the Remington weapons factory. There followed a series of similar tours on a generally easterly route with visits in Kansas (Fort Riley), Nebraska (Martin bomber plant), Indiana (Republic Aviation Corp.), and Kentucky (Fort Knox). The train returned to Washington on April 29.

CANADIAN RESPISTE

After a busy spring and early summer, the rails provided the President with some extended off-the-record recreation in Ontario on Lake Huron. On July 30, FDR left Washington. Along with his regular staff was a group of dignitaries including Adm. William D. Leahy, chief of staff; Jimmy Byrnes, director of the Office of War Mobilization; Rear Adm. Ross T. McIntire, White House physician; and special advisors Edwin M. Watson and Harry Hopkins (the latter arriving later).

After a short stop at Springwood, New York Central took the train on to the border crossing into Canada at Buffalo-Fort Erie. At Welland, Ont., a new engine crew and pilot came on board for a short run to Hamilton on the Toronto, Hamilton & Buffalo, an NYC-Canadian Pacific subsidiary. There, CPR power and crews took over for the run up to the fishing camp site of Little Current, Ont., on Manitoulin Island in Georgian Bay. Rail access was a CPR branch off its Sudbury-Sault Ste. Marie main line.

Mike Reilly, Dewey Long, and their staffs had scouted Canadian locations and had chosen Georgian Bay, renowned for its fine black bass. At Little Current, they found a CPR spur that was near the water, so the well-stocked train could provide many amenities that were otherwise scarce in the remote region.

Along with the equipment on car 1401, communications were also set up at Birch Island. These connections consisted of twice-a-day airmail, plus phone and telegraph links with the White House. Thus prepared, Roosevelt and his friends were able to spend some restful days away from the hubbub of Washington.

The Canadian days were not without incident. When some communications
When Franklin D. Roosevelt died in Warm Springs, Ga., at 3:35 p.m. Thursday, April 12, 1945, dozens of railroad officers scrambled to transform FDR’s train into a funeral procession. Southern Railway, having delivered the President to the “Little White House” on March 30, was storing the 10-car train in Atlanta.

Railroaders quickly prepared two Southern light Paciftics, Nos. 1262 and 1397, for the 74-mile deadhead trip south, and added an additional Pullman sleeper in time for a 9:53 p.m. departure. At Williamson, the locomotives were turned to be headed north the next day, and another engine pulled the train up the branch to Warm Springs, arriving at 1:25 a.m. Friday.

Government and railroad personnel spent the rest of the night loading the special party’s autos and personal belongings. The casket would not fit through the Ferdinand Magellan’s rear door, and the lounge’s sealed windows couldn’t be removed. So Conneaut, a 7-compartment/buffet/lounge that housed the Secret Service, was switched to the rear of the train to receive the body. This required removal of the lounge’s furniture and construction of a ramp—and a strong table to serve as a bier.

With the funeral party on board, the train eased away from Warm Springs at 11:13 a.m. Friday and headed back toward Atlanta. It followed a slow, hastily devised 24-hour schedule on Southern to Washington, D.C., to accommodate the thousands of mourners at trackside. The only stops permitted were for operational purposes, at division points and coal and water stations.

In Atlanta, immense clusters of people stood, awed and hushed, as the train threaded between factories, warehouses, and residences. Downtown traffic was jammed for blocks. Eight of Southern’s heavy Ps-4 class Paciftics forwarded the train north—Nos. 1409 and 1394 from Atlanta to Greenville; 1401 and 1385 to Salisbury, N.C.; 1400 and 1367 to Monroe, Va.; and 1366 and 1406 to Washington.

After dinner, Eleanor Roosevelt, who had hurried to her husband’s side after she received the news, slept—or tried to—in his bed in Room C of the Magellan.

“I lay in my berth all night with the window shade rolled up,” she wrote, “looking out at the countryside he loved and watching the faces of the people at stations, and even at the crossroads, who came to pay their last tribute all through the night.”

In the wee hours, the train stopped at a water tank between two cliffs of farmland. An impromptu choir of African-Americans sang “Hand Me Down My Walkin’ Cane”—a song with which the polio-stricken Roosevelt would have identified.

After a Saturday afternoon funeral at the White House, the cortège left for Hyde Park at 11:03 p.m. for the burial at Springwood, Roosevelt’s beloved home. There were now three trains—FDR’s, swelled to 17 cars and carrying the new President, Harry S. Truman; a second train of 13 cars for Congressmen and Supreme Court justices; and a third for an escort of 454 Marines. The trains were pulled by Pennsylvania GG1’s to New York and NYC Hudsons the rest of the way.

Roosevelt’s body arrived in Hyde Park at 8:40 a.m. Sunday, and it was soon laid to rest in his mother’s rose garden.—Bob Withers

Greeted by troops, the Roosevelt funeral train, pulled by Southern Ps-2 Pacifics 1262 and 1137, arrives Atlanta’s Terminal Station on April 13, 1945.

Car Ferdinand Magellan wouldn’t accommodate the casket, so it ran ahead of the Conneaut on the funeral train, shown passing Cold Spring, N.Y. (middle photo) and arriving Hyde Park behind New York Central 4-6-4 5283.
gear on the 1401 broke down, Long and Reilly "strung" to the rescue, politely commandeering the telegraph office in the CPR station. There, it was primarily Long and his staff who connected to a line linked with U.S. telegraph wires. After a tense wait to make certain they had White House contact, Long and his aides maintained a 30-hour vigil, which concluded when they were certain the repairs aboard car 1401 were completed.

The relaxation time was beneficial, for the President resumed a busy schedule after returning to Washington on August 9. Canada was soon to be the scene of high-level business with a rail trip on August 16 to the first Quebec Conference, held August 17-24. B&O led the way to Clarkmont, N.J., and the change to the NYC. At Albany, the Delaware & Hudson took over up to Montreal, and Canadian Pacific forwarded the train to Quebec City.

Conference participants included Great Britain Prime Minister Winston Churchill and the combined Anglo-American Joint Chiefs of Staff. Discussions involved sharing atom bomb research, aspects of the future invasion of continental Europe, and rebuilding the post-Mussolini government of Italy.

According to Mike Reilly, FDR’s rail route had been a successful secret in Canada until the return trip through Montreal. During a short operational station stop, there were two obvious giveaways to an important personage’s presence and then to Roosevelt himself. The first clue was a large contingent of Canadian police at the station, while the second was the sighting of Fala, FDR’s black Scottish terrier. By this time, Fala had earned the nickname “The Informer,” since his daily off-train exercises were a clear indication that his owner was nearby.

Rail travel was not involved with FDR’s journey to the linked conferences at Cairo, Egypt, and Tehran, Iran. Departing on November 11, 1943, he went by auto to Quantico, Va., to board the yacht Potomac, which took him to the battleship USS Iowa for the ocean voyage. On his return, he reversed passage via these ships, with the Potomac returning him to the Washington Navy Yard.

Though a seasoned whistle-stop campaigner, Roosevelt did not travel by train extensively for political purposes early in the 1944 presidential race. Since he was the armed forces’ leader, he and his advisors decided it was not appropriate for him to be linked with the ballyhoo of multiple stump speeches on the chicken-and-peas circuit again. With his nomination as the Democrats’ candidate a certainty, he didn’t even make a direct appearance at his party’s national convention in Chicago. Instead, he accepted being chosen for a fourth term via a live radio broadcast to the convention delegates on July 20, 1944.

He gave his speech from the lounge of the Magellan while visiting the U.S. Marines’ site at San Diego. From that port, he left for base visits and war-planning meet-ings in Hawaii and Alaska. After returning to Seattle, he rode the rails back to Wash-ington. At its August 17 conclusion, his journey had amassed 13,912 combined miles of rail and ocean travel.

Within a month, FDR made another visit to Canada for the Second Quebec Conference, held September 9-21. The train followed the same route as before: B&O-RDG-CNJ-NYC-D&H-CP. Again meeting with Churchill, other British officials, and Canadian officials, Roosevelt discussed post-D-Day diplomacy and military decisions. Subsequently, his aides let some time pass before permitting the President to resume more political journeys.

ON THE CAMPAIGN TRAIL

Closer to election time, FDR did hit the campaign trail by train. On the evening of Thursday, October 26, he rode the B&O northward, with a stop in Wilmington, Del., followed by a full day of tours at sites in Philadelphia. The Reading took over from the B&O at Eastwick, Pa., to Grays Ferry, Pa., where PRR accepted the train, bound for Chicago. En route, the President made one stop for a speech, in Fort Wayne, Ind., before arriving in Chicago at 6 p.m.

In the Windy City, FDR stayed aboard the Magellan on Illinois Central trackage before motoring to nearby Soldier Field. On a cold evening, he spoke from a re-portedly awkward auto ramp arrangement. According to William D. Hassett, assistant presidential press secretary, the Chief Executive had a difficult time trying to personalize his speech before the full-capacity stadium crowd.

Nor were weather and audience conditions ideal in the East. As autumn progressed, campaign visits to New York and Boston had problems. In Gotham, the rail journey went smoothly, but rain kept at-tendance down and played havoc with the President’s speech for friend Sen. Robert Wagner at Ebbets Field in Brook-lyn.

In Boston, the conclusion of FDR’s last campaign swing, the audiences were nu-merous and friendly, but rail limitations caused problems. The long campaign train proved too much for a Boston & Albany suburban tank engine to manage. The cars had to be pulled in reverse from B&A’s Beacon Park Yard some 11 miles to the Riverside area.

DIPLOMATIC FINALE

Victory in the November election re-turned FDR to the Oval Office for another unprecedented term. After holiday festivities, Roosevelt began what would be his last major diplomatic journey.

Just two days after his inauguration on January 20, 1945, the presidential train secretly left the Bureau of Engraving spur. With FDR, the passenger list included Chief-of-Staff Admiral Leahy; Adm. Wilson Brown, and Maj. Gen. Edwin Watson, the naval and military aides respectively; political advisor Ed Flynn; and Roosevelt’s daughter, Anna, acting as her secretary.

Leaving Washington before 11 p.m., two engines took the train via RF&P to Dos-
Richmond, Fredericksburg & Potomac 4-8-4 610, which led the first leg of FDR’s April 1943 nationwide tour, rolls south in 1948 at Doswell, Va., where on January 20, 1945, the POTUS train carrying FDR bound for the historic Yalta meeting moved from RF&P onto C&O.

well, Va., then on the Chesapeake & Ohio to U.S. Navy facilities at Newport News, where the train stopped at Pier Six alongside the cruiser USS Quincy. Roosevelt boarded after sunrise and sailed at 8 a.m. He was headed for the world-changing meeting with Prime Minister Churchill and Soviet Premier Josef Stalin at Yalta, on the Crimean Peninsula in the Black Sea.

The physical and mental rigors of the Yalta Conference took their toll on President Roosevelt’s already declining health. When he returned to the United States on February 27, his burdens were increased by the loss of his close advisor, Edwin Watson, who had suffered a fatal stroke while sailing back aboard the Quincy. The rail return to Washington was one of mixed moods. FDR had to be upbeat for his address to Congress on March 1 regarding the Yalta meeting, but his family and advisors knew of his inner torments and wanted him to have a long rest.

He gained some respite from Washington’s complexities with a visit to Springwood at Hyde Park in late March, and a major break was planned with a fortnight-plus stay in April at his southern retreat in Warm Springs, Ga. When the presidential special left the capital on March 29, the schedule for his future activities was already being set. After a return to the White House on April 18, he was to go west on April 20 to arrive in San Francisco in time for the United Nations Conference April 25.

But the 721.5-mile rail journey to western Georgia, mostly via Southern Railway, would be the last Franklin D. Roosevelt would take. On April 12, 1945, while at the Little White House in Warm Springs, he died of a cerebral hemorrhage.

Southern Ps-4 class 4-6-2 1401, pictured in Atlanta, participated on FDR’s funeral train; today it is on display at the Smithsonian.

Pacific 1222 stands in for all Southern’s light 4-6-2’s that hauled FDR to and from his Warm Springs, Ga., retreat on an SOU branch.